85 research outputs found

    Entwicklung und Aufbau eines Gastargets aus metastabilem, spinpolarisierten He*

    Get PDF
    Um zu sehen, was im atomaren Bereich "die Welt im Innersten zusammenhält", werden seit fast einem Jahrhundert atomphysikalische Stoßexperimente durchgeführt. Es ist also möglich, durch den Beschuß von "Targetteilchen" mit "Projektilteilchen" Aussagen über verschiedene Größen in der atomaren Welt zu treffen. Hierbei werden nicht nur Eigenschaften wie der "Durchmesser" oder eine "Ladungsverteilung" eines Atoms untersuchbar, sondern - durch entsprechend geschickte Variation des Prinzips "Stoßexperiment" - auch Größen, die ein Laie niemals mit einem Stoß zwischen zwei Teilchen in Verbindung brächte. Moderne Experimente erlauben es inzwischen zum Beispiel, selektiv die Impulsverteilung einzelner Elektronen in Atomen und Molekülen sichtbar zu machen, indem diese durch Photonen entsprechender Energie aus dem zu untersuchenden Teilchen herausgerissen werden. Besagte Experimente stellen nicht nur hohe Anforderungen an die Nachweiseinheit, die den eigentlichen Prozeß sichtbar macht, sondern auch an das verwendete Target und das Projektil. Im Bereich der atomaren Grundlagenforschung bietet sich Helium als zu untersuchendes Objekt oftmals an. Um die Natur zu verstehen, ist es nötig, gemessene Größen mit einer Theorie, die den untersuchten Vorgang beschreiben soll, zu vergleichen. Im Bereich der theoretischen Physik kann bisher nur das Wasserstoffatom, das ein sog. "Zweikörperproblem" ist, ohne Näherungsverfahren vollständig beschrieben werden. Ein Heliumatom stellt also das "einfachste" atomare System dar, das als noch nicht "komplett verstanden" gilt. Genauso ist ein Heliumatom mit seinem Atomkern und seinen zwei Elektronen das erste "Mehrelektronensystem" im Periodensystem. Es können hier also im Vergleich zu Wasserstoff auch Korrelationseffekte zwischen Elektronen untersucht werden. Die gesamte Dynamik innerhalb des Atoms erhält einen anderen Charakter. Bisherige Experimente mit Helium innerhalb unserer Arbeitsgruppe haben allerdings eine prinzipielle Beschränkung: es ist im Allgemeinen sehr schwierig, den Spin der beteiligten Elektronen im Experiment nachzuweisen, so daß alle bisherigen Messungen immer die Einstellung der Elektronenspins nicht berücksichtigen. Es wird also über den Spin gemittelt gemessen. Ein Weg, dieses Problem zu umgehen, ist, neben einer wirklichen Messung des Spins, den Spin im Anfangszustand - also vor dem Streuexperiment - zu kennen. Dies geschieht in der vorliegenden Arbeit dadurch, daß Heliumatome in einem durch "Mikrostrukturelektroden" erzeugten Mikroplasma angeregt werden, und sich so die Spins ihrer beiden Elektronen zum Teil auch parallel zueinander einstellen. Während bisherige Ansätze das Prinzip verfolgen, die angeregten Heliumatome in Niederdruckplasmen bei einigen Millibar zu erzeugen, wird die Plasmaquelle in dieser Arbeit bei Drücken von bis zu einem Bar betrieben. Dadurch kann das Prinzip des "supersonic jets" ausgenutzt werden, so daß der hier erzeugte Atomstrahl eine interne Temperatur von einigen Millikelvin und eine mittlere Geschwindigkeit von 1000 m/s besitzt. Durch einen nur 10 cm langen Separationsmagneten werden die angeregten Zustände mit Spin (#; #) von den Zuständen mit Spin ("; ") und den nicht- angeregten Heliumatomen getrennt und in einem Fokuspunkt für ein Streuexperiment zur Verfügung gestellt. In der folgenden Arbeit wird also ein sehr kompakter Aufbau eines Gastargets aus angeregtem Helium mit polarisiertem Elektronenspin vorgestellt. Ein Target aus angeregtem Helium hat außerdem einen weiteren großen Vorteil gegenüber gewöhnlichen Heliumtargets. In der modernen experimentellen Physik werden oftmals Laser zur Manipulation von Atomen eingesetzt. So ist es möglich, durch gezielte Anregung eines Atoms mit einem Laser dieses zum Beispiel extrem zu kühlen. Hierzu müssen allerdings Anregungsniveaus im Atom zur Verfügung stehen, die mit den Wellenlängen heutiger Laser erreicht werden können. Das erste Anregungsniveau von Helium liegt jedoch mit 19.8 eV deutlich zu hoch. Der nächst höhere P-Zustand ist von diesem Niveau aber nur noch ca. 1.1 eV entfernt. Photonen dieser Energie können leicht mit Lasern erzeugt werden. Angeregtes Helium ist also durch Laser manipulierbar und liefert so zum Beipiel auch den Ausgangspunkt für die Bose-Einstein Kondensation von Helium

    "Interatomic Coulombic Decay" : experimentelle Untersuchung eines neuartigen, interatomaren Abregungsmechanismus

    Get PDF
    Mit der vorliegenden Arbeit ist der eindeutige experimentelle Nachweis für die Existenz eines 1997 [Ced97] vorhergesagten, neuartigen Zerfallskanals für Van-der-Waals-gebundene Systeme erbracht worden. Die Untersuchungen wurden an einem Neondimer durchgeführt. Erzeugt man in einem Atom dieses Dimers durch Synchrotronstrahlung eine 2s-Vakanz, so wird diese durch ein 2p-Elektron aufgefüllt. Die hierbei freiwerdende Energie wird an das zweite Atom des Dimers in Form eines virtuellen Photons übertragen und löst dort ein Elektron aus einer äußeren Schale. Untersucht wurde dieser Zerfall namens „Interatomic Coulombic Decay” (ICD) durch Koinzidenzimpulsspektroskopie (COLTRIMS) [Doe00, Ull03, Jah04b]. Der Nachweis der Existenz des Effekts erfolgte dadurch, dass die Summe der Energien der Photofragmente - und im Speziellen des ICD-Elektrons und der beiden im Zerfall entstehenden Ne+-Ionen - eine Konstante ist. Durch die koinzidente Messung der Impulse, der im Zerfall entstehenden Teilchen, konnte hierdurch ICD eindeutig identifiziert werden. Die Übereinstimmung der gemessenen Energiespektren mit aktuellen theoretischen Vorhersagen [Sche04b, Jah04c] ist exzellent. Dadurch, dass das Dimer nach dem IC-Zerfall in einer Coulomb-Explosion fragmentiert, konnten des Weiteren Untersuchungen, wie sie in den letzten Jahren an einfachen Molekülen durchgeführt wurden [Web01, Lan02, Jah02, Web03b, Osi03b, Jah04a], auch am Neondimer erfolgen: Durch die Messung der Ausbreitungsrichtung der ionischen Fragmente des Dimers nach der Coulomb-Explosion wird die räumliche Ausrichtung des Dimers zum Zeitpunkt der Photoionisation bestimmt. Die gemessenen Impulse der emittierten Elektronen können dadurch im Bezug zur Dimerachse dargestellt werden. In dieser Arbeit wurden somit Messungen der Winkelverteilung der 2s-Photoelektronen und des ICD-Elektrons im laborfesten und auch dimerfesten Bezugssystem vorgestellt und mit vorhandenen theoretischen Vorhersagen verglichen. Die Winkelverteilung des Photoelektrons ähnelt stark der Verteilung, die man nach der Photoionisation eines einzelnen Neonatoms erhält und hat somit fast reinen Dipolcharakter. Die Präsenz des zweiten Atoms des Dimers verursacht nur leichte Modulationen, so dass auch die Änderung der Ausrichtung der Dimerachse im Bezug zur Polarisationsrichtung des linear polarisierten Lichtes nur geringe Auswirkungen hat. Durch die koinzidente Messung aller vier nach der Photoionisation entstehenden Teilchen konnte außerdem ein weiterer Doppelionisationsmechanismus des Dimers nachgewiesen werden: Ähnlich wie in einzelnen Atomen [Sam90] gibt es auch in Clustern den TS1-Prozess. Hierbei wird ein 2p-Elektron aus dem einen Atom des Dimers herausgelöst. Es streut dann an einem 2p-Elektron des anderen Atoms, das hierdurch ionisiert wird. Diese etwas andere Form des TS1 im Cluster ist also genau wie ICD ein interatomarer Vorgang. Die Summe der Energien der beiden, in diesem Prozess entstehenden Elektronen hat einen festen Wert von h... − 2 · IP(2p) − KER = 12 eV, so dass dieser Prozess hierdurch im Experiment gefunden werden konnte. Die gemessenen Zwischenwinkel zwischen den beiden Elektronen zeigen des Weiteren genau die für zwei sich abstoßende Teilchen typische Verteilung einer Gauss-Kurve mit einem Maximum bei 180 Grad. Da im Falle von interatomarem TS1 die Potentialkurve der Coulomb-Explosion direkt aus dem Grundzustand populiert wird, konnte im Rahmen der „Reflexion Approximation” die Wahrscheinlichkeitsverteilung der Abstände der beiden Dimeratome experimentell visualisiert werden. Das Betragsquadrat des Kernanteils der Dimergrundzustandswellenfunktion wurde somit direkt vermessen. Die Messungen wurden bei drei verschiedenen Photonenenergien durchgeführt, um die Ergebnisse weiter abzusichern und robuster gegen eventuelle systematische Fehler zu machen. Da kein isotopenreines Neongas im Experiment eingesetzt wurde, konnten genauso Ionisations- und ICD-Ereignisse von isotopischen Dimeren (20Ne22Ne) beobachtet und ausgewertet werden. Die gemessenen Spektren sind innerhalb der Messtoleranzen identisch zu denen für 20Ne2

    Streaking temporal double slit interference by an orthogonal two-color laser field

    Full text link
    We investigate electron momentum distributions from single ionization of Ar by two orthogonally polarized laser pulses of different color. The two-color scheme is used to experimentally control the interference between electron wave packets released at different times within one laser cycle. This intracycle interference pattern is typically hard to resolve in an experiment. With the two-color control scheme these features become the dominant contribution to the electron momentum distribution. Furthermore the second color can be used for streaking of the otherwise interfering wave packets establishing a which-way marker. Our investigation shows that the visibility of the interference fringes depends on the degree of the which-way information determined by the controllable phase between the two pulses.Comment: submitted to PR

    Observation of the Efimov state of the helium trimer

    Full text link
    Quantum theory dictates that upon weakening the two-body interaction in a three-body system, an infinite number of three-body bound states of a huge spatial extent emerge just before these three-body states become unbound. Three helium atoms have been predicted to form a molecular system that manifests this peculiarity under natural conditions without artificial tuning of the attraction between particles by an external field. Here we report experimental observation of this long predicted but experimentally elusive Efimov state of 4^{4}He3_{3} by means of Coulomb explosion imaging. We show spatial images of an Efimov state, confirming the predicted size and a typical structure where two atoms are close to each other while the third is far away

    Chiral photoelectron angular distributions from ionization of achiral atomic and molecular species

    Full text link
    We show that the combination of two achiral components - atomic or molecular target plus a circularly polarized photon - can yield chirally structured photoelectron angular distributions. For photoionization of CO, the angular distribution of carbon K-shell photoelectrons is chiral when the molecular axis is neither perpendicular nor (anti-)parallel to the light propagation axis. In photo-double-ionization of He, the distribution of one electron is chiral, if the other electron is oriented like the molecular axis in the former case and if the electrons are distinguishable by their energy. In both scenarios, the circularly polarized photon defines a plane with a sense of rotation and an additional axis is defined by the CO molecule or one electron. This is sufficient to establish an unambiguous coordinate frame of well-defined handedness. To produce a chirally structured electron angular distribution, such a coordinate frame is necessary, but not sufficient. We show that additional electron-electron interaction or scattering processes are needed to create the chiral angular distribution

    Kinematically complete experimental study of Compton scattering at helium atoms near the ionization threshold

    Full text link
    Compton scattering is one of the fundamental interaction processes of light with matter. Already upon its discovery [1] it was described as a billiard-type collision of a photon kicking a quasi-free electron. With decreasing photon energy, the maximum possible momentum transfer becomes so small that the corresponding energy falls below the binding energy of the electron. Then ionization by Compton scattering becomes an intriguing quantum phenomenon. Here we report a kinematically complete experiment on Compton scattering at helium atoms below that threshold. We determine the momentum correlations of the electron, the recoiling ion, and the scattered photon in a coincidence experiment finding that electrons are not only emitted in the direction of the momentum transfer, but that there is a second peak of ejection to the backward direction. This finding links Compton scattering to processes as ionization by ultrashort optical pulses [2], electron impact ionization [3,4], ion impact ionization [5,6], and neutron scattering [7] where similar momentum patterns occur.Comment: 7 pages, 4 figure
    corecore